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INTRODUCTION 

Hydrocephalus (HCP) is one of the major problems faced by neurosurgeons because not 

treating or delaying treatment for HCP can cause increased intracranial pressure (ICP) and 

brainstem injury, leading to mortality and disability [1,2]. Elevated ICP is associated with un-

favorable outcomes and poor prognoses in neurosurgical patients [3,4]. Therefore, predicting 

ICP before cerebrospinal fluid diversion is important to evaluate patients’ prognoses and pro-
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vide advice to their relatives. 

Prior studies have examined the relationships between ICP 

and various imaging parameters, such as optic nerve sheath 

diameter (ONSD) and ventricular indexes, for ICP prediction 

by traditional statistical analysis; however, their results have 

been inconclusive [5-9]. Lee et al. [5] studied HCP in adult 

patients and found that ONSD was significantly and linearly 

correlated with ICP (r=0.543, P<0.001), while Kavi et al. [6] 

found no correlation between ONSD and ICP using the linear 

correlation test. Additionally, Jenjitranant et al. [7] found that 

ONSD factors were significantly associated with increased ICP 

by logistic regression analysis. 

Ventricular indexes composed of the Evans index, third 

ventricular index, cella media index, and ventricular score 

have been studied for ICP-level association [8,9]. Kim et al. [8] 

studied patients with communicating, non-communicating, 

or normal pressure HCP and found that the third ventricular 

index had a negative correlation with ICP (r=−0.395, P<0.01) 

in non-communicating HCP, while Eide et al. identified a 

non-significant relationship between ventricular indexes and 

ICP [9]. 

Machine learning (ML) has been used to predict various 

clinical outcomes in various neurosurgical fields. Further, ML 

classification has been commonly used in studies to predict bi-

nary classifiers and categorical outcomes [10-13]. Miyagawa et 

al. [11] used ML classification to predict the suspected increase 

of ICP in children with HCP and reported an accuracy of 91%– 

94%, while Schweingruber et al. [12] predicted increased ICP 

in patients by recurrent ML classification and reported an ac-

curacy of 0.686–0.931. According to our literature review, how-

ever, few studies have mentioned ML regression for ICP pre-

diction, which could be a non-invasive approach in real-world 

practice. Based on this gap in knowledge, the primary purpose 

of the present study was to identify the factors correlated with 

ICP, and the secondary objective was to compare predictive 

performances among linear, non-linear, and ML regression 

models for ICP prediction. 

MATERIALS AND METHODS 

Study Design and Population 
After gaining approval from the Ethics Committee and Insti-

tutional Review Board of the Faculty of Medicine at Prince 

of Songkla University (REC.65-249-10-1). Informed consent 

from the patients was not necessary for the present study, as it 

involved a retrospective analysis. However, patient identifica-

tion numbers were encoded before analysis. Our retrospective 

cohort investigation began with a review of the electronic 

medical records of HCP patients who were admitted and un-

derwent ventriculostomy at a tertiary hospital between Janu-

ary 2014 and June 2022. Clinical characteristics and imaging 

parameters were collected. Patients who did not undergo pre-

operative cranial computed tomography (CT) imaging or who 

had missing data on intraoperative ICP after ventriculostomy 

were excluded, as shown in Figure 1. 

Operational Definition 
ICP was the outcome of the present study and was intraopera-

tively measured after ventricular catheter insertion. Therefore, 

ICP in cm H2O was converted to mm Hg using the equation 1 

cm H2O=0.736 mm Hg [13]. Several preoperative imaging pa-

rameters were also collected for hypothesis testing. According 

to a study by Mataró et al. [14], several ventricular lines were 

estimated for calculating the ventricular indexes, as shown 

in Figure 2A and B. In detail, the following various lines were 

measured from a cranial CT scan at the level of the third ven-

tricle: the maximum bifrontal distance of the lateral ventricle 

■ Hydrocephalus is a major issue for neurosurgical patients 
that can result in death and disability.

■ Machine learning is currently being used to predict a va-
riety of therapeutic outcomes in different neurosurgical 
domains.

■ Machine learning algorithms are helpful for predicting 
intracranial pressure in patients with hydrocephalus.

KEY MESSAGES

Figure 1. Patient flowchart for inclusion and analysis.
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(A), the distance between the caudate nuclei at the level of 

the foramen of Monro (B), the maximum width of the third 

ventricle (C), and the maximum inner diameter of the skull at 

the level of the maximum bifrontal distance measurement (E). 

Meanwhile, the minimum width of the cella media (D) and the 

maximal outer interparietal diameter (F) were measured at the 

level of the cella media. Subsequently, the ventricular indexes 

were calculated as follows: 

Evans index (A/E), third ventricle index (C/E), cella media 

index (D/F), and ventricular score [(A+B+C+D)/E×100].  

The ONSD of both eyes was measured on an axis perpendic-

ular to the optic nerve (transverse plane) at 3 mm behind the 

globe by axial CT imaging according to the method of Jenjitra-

nant et al. [7], as shown in Figure 2C. Therefore, the average 

ONSD was calculated for analysis. 

Statistical Analysis 
Using descriptive statistics, the baseline characteristics of the 

current cohort were outlined. In detail, the categorical vari-

ables are presented as percentage, whereas the continuous 

variables are presented as mean and standard deviation (SD). 

Pearson’s correlation was used to evaluate the strength of the 

association; values indicating a very weak correlation ranged 

from 0–0.19, those indicating a weak correlation ranged from 

0.2–0.39, those indicating a moderate correlation ranged from 

0.4–0.59, those indicating a strong correlation ranged from 

0.6–0.79, and those indicating a very strong correlation ranged 

from 0.8–1.0 [15]. Moreover, the correlation matrix was used 

for visualization with the scatterplot among various variables. 

The correlation coefficient formula was used to determine 

the sample size for hypothesis testing [16]. In a previous study 

[8], a correlation coefficient of 0.543, alpha value of 0.05, and 

beta value of 0.1 were employed for estimation. As a result, a 

sample size of at least 32 patients was required for validation. 

ML Regression 
A random 80:20 split was used to divide the whole set of data 

into a training dataset and a testing dataset, respectively. Of 

these, the training dataset was used to construct the predictive 

model, while the performance of ICP prediction was estimated 

using the testing dataset. Various traditional regression mod-

els were performed, including linear regression, polynomial 

regression, log transformation, and cubic spline regression, 

for ICP prediction. Additionally, the following algorithms of 

ML regression were used to develop the models: k-nearest 

neighbors, decision tree, random forest (RF), extreme gradient 

boosting (XGBoost), and artificial neural network. In detail, 

10-fold cross-validation was performed for training, and the 

best tuning parameters for the model of each algorithm were 

optimized by minimizing the root mean square error (RMSE) 

according to the method of Kassambara [17]. 

The setting of the RF in the present study was 500 trees 

contained in the forest and 5 nodes of the terminal node size, 

whereas the architecture of the artificial neural network in-

cluded 2 hidden layers with 3 and 2 neurons, respectively, and 

a single output. 

Predictive Performance Metrics 
The predictive performances of the linear, non-linear, and ML 

models were compared using the mean absolute error (MAE), 

Figure 2. Measurement of ventricular parameters and optic nerve sheath diameters. (A) Ventricular parameters at the level of the foramen of 
Monro. (B) Ventricular parameters at the level of the cella media. (C) Optic nerve sheath diameter measurement.
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Table 1. Baseline characteristics of the present cohort
Characteristics Value (n=412)
Sex
 Male 196 (47.6)
 Female 216 (52.4)
Age (yr) 51±24
Underlying disease
 Hypertension 120 (29.1)
 Diabetes 46 (11.2)
 Dyslipidemia 40 (9.7)
 Renal failure 23 (5.8)
 Liver disease 6 (1.5)
American Association of Anesthesiologists classification
 2 8 (1.9)
 3 320 (77.7)
 4 80 (19.4)
Signs and symptoms
 Headache 132 (32.0)
 Motor weakness 310 (75.2)
 Ataxia 12 (2.9)
 Preoperative seizure 38 (9.2)
Preoperative Glasgow coma scale score
 13–15 66 (16.0)
 9–12 102 (24.8)
 3–8 244 (59.2)
Pupillary light reflex
 Fixed both eyes 56 (13.6)
 React one eye 32 (7.8)
 React both eyes 324 (78.6)
Type of hydrocephalus
 Communicating hydrocephalus 146 (35.4)
 Obstructive hydrocephalus 266 (64.6)
Basal cistern obliteration 194 (47.1)
Emergency operation 388 (94.2)
Mean intracranial pressure (mm Hg) 31.4±9.5

Values are presented as number (%) or mean±standard deviation.

Table 2. Average imaging parameters and indexes
Parameter/index Mean±SD
Optic nerve sheet diameter (mm) 5.5±0.8
A (mm) 43.2±9.4
B (mm) 30.5±9.5
C (mm) 12.1±5.2
D (mm) 37.8±10.2
E (mm) 129.9±6.5
F (mm) 142.7±12.2
Evans index (A/E) 0.3±0.1
Third ventricular index (C/E) 0.1±0.0
Cella media index (D/F) 0.3±0.1
Ventricular score ([A+B+C+D/E]×100) 95.3±23.7
Midline shift (mm) 1.5±3.1
Mass diameter (mm) 11.1±18.6

SD: standard deviation.

RMSE, and R2. The best model should have the highest R2 

and lowest errors. Therefore, the linear, non-linear, and ML 

regression models were performed using the “caret” package 

in R version 4.0.3 (R Foundation for Statistical Computing). In 

addition, the ML models were provided as web application by 

the shiny R package. 

RESULTS 

Four hundred twelve patients were included in the analysis. 

The baseline clinical characteristics are shown in Table 1. The 

mean age of patients was 51 years (SD, 24 years), and more 

than half were female. Additionally, emergency ventriculos-

tomy was performed in 94.2%, and two-thirds of HCP cases 

were obstructive cases. Intraoperative ICP was recorded in the 

operative notes when a ventricular catheter was inserted. The 

mean ICP was 31.43 mm Hg (SD, 9.45 mm Hg), and 59.2% of 

patients had a Glasgow coma scale score less than 9 points.  

The average imaging parameters are shown in Table 2. The 

mean ONSD was 5.5 mm (SD, 0. 8 mm), while the mean Evans 

index, mean third ventricular index, mean cella media index, 

and mean ventricular score were 0.3 (SD, 0.1), 0.1 (SD, 0.0), 0.3 

(SD, 0.1), and 95.3 (SD, 23.7), respectively. 

Factors Correlated with ICP 
The correlations between various parameters and ICP are 

demonstrated in Figure 3 using a correlation matrix. The 

ONSD had a moderately positive correlation with ICP (r=0.530, 

P<0.001) according to Pearson’s correlation, whereas no ven-

tricular indexes were statistically correlated. 

Comparison of the Predictive Performance Metrics 
among Regression Models 
After the 80:20 data split, 330 HCP patients were used to train 

the predictive model, while the remaining patients were used 

for testing performances. Although ONSD was a significant 

parameter related to ICP, ventricular indexes and other fea-

tures were still necessary to build a predictive model and test 

their performances. Therefore, the following three strategies 

were adopted for model development and predictive perfor-
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mance evaluation: (1) ONSD; (2) ONSD with ventricular in-

dexes; and (3) ONSD, ventricular indexes, and other features 

(mass diameters and midline shift). The predictive perfor-

mances of various models for ICP are shown in Table 3. 

The cubic spline regression had the lowest MAE and RMSE 

in the first strategy of model development. However, low R2 

values in all regression models were observed and ranged 

from 0.10–0.17. In the second strategy, the addition of ventric-

ular indexes in the model increased R2 dramatically to 0.34 

and 0.50 in RF and XGBoost algorithms, respectively. More-

over, the XGBoost regression had the lowest errors among the 

models. Model development with the third strategy revealed 

slightly increased predictive performances, with RF and XG-

Boost algorithms still exhibiting low errors and high R2 values. 

Compared to linear regression, Figure 4 shows the real and 

predicted ICP values calculated by RF and XGBoost algo-

rithms. The ICP that was predicted by XGBoost was closer to 

the regression line than those of linear and RF regression. For 

general-practice implications, we enable access to the web 

application at https://neurosxpus.shinyapps.io/ICP_HCP/, as 

shown in Figure 5. 

DISCUSSION 

In previous studies, the relationships between ONSD and ven-

tricular indexes to ICP have remained unclear [6-8]. Here, we 

found that ONSD was significantly correlated with ICP using 

linear correlation. The concordance results in this study were 

like those reported by previous studies [5,18]. Lee et al. [5] 

revealed a significantly positive link between ONSD and ICP, 

Figure 3. Correlation matrix of various parameters together with their scatterplots. ONSD: optic nerve sheath diameter; A: the maximum bifrontal 
distance of the lateral ventricle; B: the distance between the caudate nuclei at the level of the foramen of Monro; C: the maximum width of the 
third ventricle; D: the minimum width of both cella media; E: the maximum inner diameter of the skull at the level of the maximum bifrontal 
distance measurement; F: the maximal outer interparietal diameter; Ventri: ventricular score; Mass: mass diameter; MLS: midline shift; ICP: 
intracranial pressure.

https://neurosxpus.shinyapps.io/ICP_HCP/
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Table 3. Predictive performances of various models for intracranial 
pressure
Model MAE RMSE R2

1st model (ONSD)
 Linear regression 6.45 8.59 0.15
 Polynomial regression 6.27 8.56 0.16
 Log transformation 6.47 8.60 0.14
 Cubic spline regression 6.26 8.54 0.16
 KNN (k=9) 6.55 8.95 0.11
 DT 6.62 8.95 0.10
 RF 7.10 9.70 0.14
 XGBoost 6.34 8.70 0.17
 ANN 6.30 8.58 0.16
2nd model (ONSD with ventricular indexesa))
 Linear regression 6.43 8.59 0.15
 Polynomial regression 6.03 8.23 0.17
 Log transformation 6.23 8.41 0.14
 Cubic spline regression 6.01 8.15 0.17
 KNN (k=5) 6.07 8.48 0.13
 DT 6.75 9.04 0.13
 RF 5.02 7.42 0.34
 XGBoost 3.89 6.46 0.50
 ANN 6.48 8.88 0.16
3rd model (ONSD+ventricular indexesa)+other parametersb))
 Linear regression 6.70 8.73 0.16
 Polynomial regression 6.50 8.91 0.08
 Log transformation 6.49 8.88 0.01
 Cubic spline regression 6.75 9.08 0.01
 KNN (k=5) 5.75 8.15 0.18
 DT 6.06 8.24 0.22
 RF 4.67 6.98 0.41
 XGBoost 3.62 6.72 0.51
 ANN 6.48 8.88 0.16

MAE: mean absolute error; RMSE: root mean square error; ONSD: optic nerve 
sheath diameter; KNN: k-nearest neighbors; DT: decision tree; RF: random 
forest; XGBoost: extreme gradient boosting; ANN: artificial neural network.
a) Ventricular indexes=Evans index, third ventricle index, cella media index, 
and ventricular score; b) Other parameters=mass diameters and midline 
shift.

with a yield of enhanced ICP categorization by the area under 

the receiver operating characteristic curve (AUC) of 0.834, 

whereas Jeon et al. [18] found that ONSD was associated with 

increased ICP and reported an AUC of 0.936. 

While ONSD correlated statistically and significantly with 

ICP, none of the ventricular markers showed a correlation, 

consistent with the findings of Kavi et al. [6]. Although there 

were no statistical connections between ventricular indexes 

and ICP in the present study, we discovered that these indexes 

were useful for ICP prediction using ensemble learning. When 

ventricular indexes were included in the second strategy of 

model development, the R2 value, which reflects the percent-

age of explanation by independent variables, increased. Ac-

cording to logical explanation, ventricular indexes represent 

the severity of the ventricular size that should directly affect 

ICP [14]. 

Both the XGBoost and the RF ensemble learning algorithms 

had low MAE and RMSE values for ICP prediction. Datasets 

with vital features provide additional information through 

meaningful modeling and enhanced performance of the pre-

diction [19]. In addition, XGBoost and RF algorithms had high 

predictive performances.  

The XGBoost algorithm has been used extensively for pre-

dicting clinical outcomes in neurosurgery, including in gli-

oma [20], traumatic brain injury [21], spinal cord injury [22], 

and subarachnoid hemorrhage [23]. However, research that 

discusses the predictive performance of continuous variable 

outcomes is lacking. While RF regression was used to predict 

continuous variable outcomes from the literature review, Tun-

thanathip et al. [24] reported RF regression that was effective 

and precise enough to predict the number of units of blood 

product necessary for a brain tumor operation. Moreover, 

ML could optimize the over-requesting of preoperative blood 

products and reduce preoperative costs by 47.88%–67.88% 

[24]. 

Although the XGBoost and RF algorithms allow fewer errors 

than linear regression for ICP prediction, clinicians in gener-

al practice may be comfortable with the simplicity of linear 

regression. As a result, the user-friendliness of a tool is one of 

the most important criteria linked to physician utilization in 

the real world. We developed an ML-based online applica-

tion that only requires predictor variables to be entered, after 

which cloud ML models will output the expected ICPs. This 

deployment is in concordance with other research reports 

[24,25]. 

To the best of our knowledge, the present study was the first 

to use various ML regression models to predict ICP in patients 

with HCP. Therefore, ML may be an alternative non-invasive 

procedure for application in patients who have contraindica-

tions, such as unstable vital signs or coagulopathy. However, 

the limitations of the present study should be noted. There 

have been several techniques of ONSD measurement used 

in prior studies, such as ultrasonography [18] and cranial CT 

imaging [5-7]. An axial view of a cranial CT scan is one of the 

acceptable methods, whereas ONSD measurement by ultra-
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Figure 4. Scatterplots of actual and predicted intracranial pressure (ICP) among linear regression, random forest, and extreme gradient boosting 
(XGBoost) using test data with the third model.

Figure 5. A screen capture of the sample web application for predicting intracranial pressure (ICP). ONSD: optic nerve sheath diameter.
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sonography may be limited by operator dependence [7]. To 

validate generalizability, the ML model needs to be estimated 

using additional data for improvement of predictive perfor-

mance [26,27]. 

Ensemble learning techniques, including XGBoost and RF 

algorithms, are useful for estimating preoperative ICP and 

prognosticating HCP in patients. Furthermore, ML-based 

prediction may be an effective non-invasive approach to use 

in future challenges. 
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