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INTRODUCTION 

Sepsis is a frequent and severe condition, with a prevalence approaching 20% in intensive 

care unit (ICU) patients [1,2]. Sepsis mortality rates have dropped over time but remain unac-

ceptably high. In a recent estimate in Australia and New Zealand, the 28-day mortality from 
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sepsis in ICU patients was 17% [3]. Sepsis pathophysiology has 

been studied extensively during the past decade. Infections 

may cause complex and widespread inflammation resulting 

in both macrocirculatory and microcirculatory dysfunctions 

associated with organ failures that may eventually cause death 

[4]. In addition, venous congestion may also reduce organ 

perfusion and worsen organ failure [5,6]. To date, no specific 

treatment has demonstrated efficacy for sepsis. Acute kidney 

injury (AKI) is a frequent feature of sepsis and is consistently 

associated with worse outcomes [6]. Sepsis-associated AKI in-

cidence varies between 22 and 53% [7]. Sepsis-associated AKI 

has long-term consequences. In this regard, AKI survivors may 

eventually develop chronic kidney disease with a substantial 

need for renal replacement therapy. 

Radiomic analysis (RA) is a recent field of investigation in 

medical imaging. RA aims at using all the information existing 

in acquired medical images by extracting quantitative data 

using dedicated software. RA has been used in several do-

mains to identify new predictors of clinical outcomes [8-10]. 

Radiomic data reflect tissue architecture and perfusion [9-12] 

and could therefore represent a valuable tool to predict organ 

failure or outcome during sepsis. The objective of this study 

was to assess and evaluate RA models for the prediction of in-

ICU mortality and AKI occurrence in critically ill patients with 

abdominal sepsis. 

MATERIALS AND METHODS 

This preliminary single-center observational retrospective 

study received approval by an Ethics Committee (Comité 

d’éthique de la Recherche en Anesthésie-Réanimation, No. 

00010254-2018-062) and Commission Nationale Informatique 

et Liberté (No. 173692) and a full waiver of informed consent 

was granted. 

Study Design and Population 
All medical records of patients admitted to the ICU between 

2013 and 2016 were retrieved and further analyzed. Patients 

with the following criteria were included: (1) age >18 years, 

(2) history of severe abdominal sepsis during hospitalization, 

abdominal computed tomography (CT) with injection of 

iodinated contrast material and images acquired during the 

portal venous phase (i.e., 70 to 90 seconds after the beginning 

of intravenous administration of iodinated contrast material), 

and (3) CT examination was performed during the 48 hours 

preceding or following the diagnosis of sepsis. 

Outcomes 
The primary endpoint was in-ICU mortality. The secondary 

endpoint was AKI within 7 days after sepsis diagnosis. 

Data Collection 
The following data were collected from admission to dis-

charge: (1) demographic data, (2) duration of hospitalization 

stay, clinical data (arterial blood pressure, pulse rate, pulse 

oxygen saturation, urine output, Glasgow coma scale, respira-

tory rate) and biological tests (blood count, blood and urine 

electrolyte tests, blood gas analyses, bacterial analysis), and (3) 

treatments administered during sepsis (mechanical ventila-

tion, renal replacement therapy, antibiotics, vasopressors), in-

ICU mortality, and timing of CT examination. 

“Severe abdominal sepsis” was defined as an abdominal 

infection (i.e., confirmed by final diagnosis of abdominal 

infection in medical records or imaging with abnormal 

abdominal findings or surgical or endoscopic intervention 

confirming the diagnosis) and sepsis according to the sep-

sis 3.0 definition (i.e., variation of Sequential Organ Failure 

Assessment (SOFA) score before and after sepsis >2, and 

a suspected infection as fever or biological inflammatory 

syndrome or culture of bacteria) [13]. Patients were initially 

extracted using diagnostic code (CIM10: A41.9). Then, pa-

tients were reclassified using the sepsis 3.0 definition. Septic 

shock was defined as sepsis associated with hyperlactatemia 

≥2 mmol/L and vasopressor therapy. Ischemic colitis caused 

sepsis or a sepsis-like inflammatory syndrome and was con-

firmed during a surgical procedure. 

CT examination was performed within 48 hours before or 

after diagnosis of severe abdominal sepsis. AKI was diagnosed 

within 7 days of sepsis diagnosis. Simplified Acute Physiology 

Score (SAPS) II was assessed 24 hours after sepsis diagnosis. 

AKI was defined according to the Kidney Disease Improving 

■ This study assessed a model that showed that radiomic 
analysis (RA) had poor predictive performance for in-in-
tensive care unit (ICU) mortality but good predictive 
performance for acute kidney injury in patients with ab-
dominal sepsis.

■ These results suggest that the use of RA from computed 
tomography may help ICU physicians to stratify patients 
with sepsis.
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Global Outcomes (KDIGO) criteria during the first seven 

days following abdominal sepsis diagnosis [14] using serum 

creatinine level and urine output as functional parameters. 

Mortality was defined as in-ICU mortality following a sepsis 

diagnosis until discharge from the ICU. 

Patient Management 
Patients were treated according to Hôpital Lariboisière Sur-

gical ICU protocols in compliance with international guide-

lines. Antibiotics were administrated as soon as possible after 

sepsis was diagnosed and were chosen according to the local 

microbiological environment and local protocols. Surgical 

treatment was discussed with the surgeon, intensivist, and 

anesthesiologist and was assessed at early as possible. 

CT Acquisition 
Abdominal CT examinations were performed within 48 hours 

following sepsis diagnosis using the standardized parameters 

for all images, with two single-source 64-section CT units 

(Somatom Sensation 64, Siemens Healthineers and Brilliance 

64, Phillips Healthcare). Portal venous phase images were 

obtained 70 to 90 seconds after intravenous administration 

of iodinated contrast material. No bolus tracking method was 

used for contrast agent administration to account for reduced 

cardiac output in the RA interpretation. Portal venous phase 

imaging features were as follows: nominal section thickness, 

0.625 mm; beam pitch, 1.2; reconstruction interval, 1 mm; 

tube voltage, 120 kV; and tube current, 120–170 mA. Patients 

received 90 to 110 ml of contrast agent at a concentration of 

350 mg/ml of iodine (iomeprol, Iomeron 350, Bracco Imag-

ing) or iobitridol (Xenetix 350, Guerbet), which was adminis-

tered intravenously with an automated power injector (Op-

tiVantage, Mallinckrodt-Tyco/Healthcare) at an injection rate 

of 3.5 to 5 ml/sec. 

Image Segmentation 
RA was performed on abdominal CT images obtained during 

the portal venous phase. To ensure the reproducibility of the 

acquisition time, all patients for whom images did not meet 

the following quality criteria were excluded: (1) absence of 

hardening artifacts in the upper abdomen related to elbows, 

(2) enhancement of the portal venous system and veins, (3) 

no excretion of contrast in the urinary tract, and (4) uniform 

and homogeneous enhancement of splenic parenchyma. 

Three CT images were selected for analysis for each patient. 

One slice was obtained through the pelvis of each kidney, and 

one slice showed the portal bifurcation at the porta hepatis. 

Quantitative radiomic features were extracted after semi-au-

tomatic segmentation of each kidney and of the whole liver 

using TexRAD software (Supplementary Figure 1). Manual ad-

justments of regions of interest were made by an abdominal 

radiologist (AD with 7 years of experience in RA) to confirm 

exact segmentation and blinded to clinical parameters. RA 

was performed following the Image Biomarker Standardiza-

tion Initiative guidelines [15]. 

Image Analysis 
RA was performed on features extracted from the distribution 

of pixel values in the region of interest. First order features 

included mean values, standard deviation, entropy, mean of 

positive pixels, skewness, and kurtosis. For each parameter, 

the segmented regions of interest were filtered using a Lapla-

cian of the Gaussian transformation, and the features were 

measured at six different spatial scale filters (0, 2, 3, 4, 5, 6) 

[16]. 

All three-images were used in the model for mortality and 

AKI prediction. We hypothesized that using kidney and liver 

images would better reflect organ sepsis-associated damage 

and be representative of macro and microcirculation injury. 

Because the number of features “P” was much larger than the 

number of observations “N,” the risk of collinearity between 

variables and overfitting of models was high. To circumvent 

these caveats, we used and compared two different and robust 

models to select features before predicting in-hospital mor-

tality or AKI. In the first model, we used elastic net regularized 

logistic regression. This method is a convex combination of 

ridge (L2 regularization) and least absolute shrinkage and se-

lection operator, L1, regularization (LASSO) penalties. We hy-

pothesized that variables are strongly correlated. The LASSO 

penalty is indifferent to the choice among a set of strong but 

correlated variables. The ridge penalty tends to shrink the co-

efficients of correlated variables toward each other. Elastic-net 

combines the advantages of the two regularization methods. 

The α-hyperparameter controls the balance between LASSO 

and ridge penalties, while λ controls the weight of the overall 

regularization. We used random forest for the second model. 

For the random forest method, the hyperparameter to tune is 

the optimal number of variables randomly sampled as candi-

dates at each tree split (mtry). 

Hyperparameter tuning was performed using five-fold 

cross-validation repeated 10 times: all datasets were divided 

into five groups, and four of them were used to train the mod-
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els and were validated with the fifth group. This process was 

repeated 10 times with a different patient repartition in the 

same proportion. The final performances of the models were 

assessed on the folds that were not used for the construc-

tion. This avoided potential overfitting through the mean of 

all obtained areas under the curve (AUCs). 

Statistical Analysis 
Statistical analysis was conducted with R software (ver. 3.6.2, 

R Foundation for Statistical Computing). Qualitative vari-

ables were expressed as raw numbers, proportions, and per-

centages. Quantitative variables were expressed as means 

±standard deviations (SD) or medians and interquartile 

ranges (IQR; Q1–Q3) depending on the normality of the dis-

tribution [17]. Continuous variables were compared using a 

Mann-Whitney U-test. Categorical variables were compared 

using the chi-square or Fisher exact test as appropriate. The 

sensitivity, specificity, and the cross-validated area under 

the receiver operating curve with 95% confidence intervals 

(CIs) were computed using the Delong test and the boot-

strap method [18]. The sensitivity, specificity, and accuracy 

of the models were calculated along with their 95% CI with 

the Clopper-Pearson method. The report of this study was 

performed in compliance with the Standards for Reporting 

of Diagnostic accuracy studies (STARD) statement. Perfor-

mances of SAPS II, RA, or both were tested. Significance was 

set to P<0.05. 

RESULTS 

Study Population 
Between January 2013 and December 2015, 126 patients (70 

men, 56 women) were admitted for abdominal sepsis, and 

their records were screened. Ninety-one met the inclusion 

criteria, and 55 were included. Figure 1 shows the study flow 

chart. Table 1 summarized the characteristics of included 

patients. Four (7.3%) patients had chronic kidney disease and 

none had chronic liver disease. 

Figure 1. Study flow chart. CT: computed tomography.

Table 1. Characteristics of included patients
Characteristic Value
Male 33 (60)
Age (yr) 72 (57–82)
Medical history
  Cardiovascular risk factorsa) 38 (69.1)
  Chronic heart failure 17 (30.9)
  COPD 8 (14.5)
  CKD 4 (7.3)
Reason for admission
  Peritonitis 35 (63.6)
  Ischemic colitis 9 (16.4)
  Cholangitis 8 (14.5)
  Othersb) 3 (5.4)
Mechanical ventilation 49 (89.1)
Duration of ventilation (day) 5 (2–14)
Length of hospitalization (day) 9 (5–21)
Surgical treatment 46 (83.6)
Vasopressor treatment 52 (94.5)
AKI 42 (76.4)
KDIGO score 1 (1–2)
RRT 9 (16.4)
Lactate (mmol/L) 2.7 (1.9–4.3)
In-ICU mortality 14 (25.5)
Serum creatinine during sepsis (mg/dl) 1.1 (0.74–1.63)
Severity scores at the day of sepsis
  SOFA score 24 hr 7 (4.50–9.50)
  SAPS II 49 (37–60)
Sepsis 3 (5.50)
Septic shock 52 (94.5)

Values are presented as number (%) or median (interquartile range).
COPD: chronic obstructive pneumopathy disease; CKD: chronic kidney 
disease; AKI: acute kidney injury; KDIGO: Kidney Disease Improving Global 
Outcome; RRT: renal replacement therapy; ICU: intensive care unit; SOFA: 
Sequential Organ Failure Assessment; SAPS: Simplified Acute Physiology 
Score.
a) Cardiovascular risk factor: diabetes mellitus, obesity, dyslipidemia, 
peripheral vascular injury; b) Endometritis and pancreatitis.

126 Screened patients

91 Included patients

55 Analyzed patients

35 Not included
13 �CT examination not available at the time 

of sepsis 
22 Non-abdominal sepsis

36 Excluded
25 �CT examination of poor quality or wrong 

time point of contrast injection
11 Dead within the first 48 hr
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The median age of the study population was 72 years (IQR, 

57–82 years), median SOFA and median SAPS II (during 

sepsis diagnosis) were respectively 7 (IQR, 4.5–9.5) and 49 

(IQR, 37–60). In-ICU mortality was 25.5%. Forty-nine patients 

(89.1%) were under mechanical ventilation for more than 24 

hours, and 46 (83.6%) had surgical treatment. Forty-two pa-

tients (76.4%) developed AKI following a sepsis diagnosis, and 

nine (16.4%) needed renal replacement therapy. The median 

lactate during sepsis diagnosis value was 2.7 µmol/L (IQR, 

1.9–4.3 µmol/L). The median duration of hospitalization was 9 

days (IQR, 5–21 days). Abdominal sepsis origin was peritonitis 

for 35 patients (63.6%). Nine patients (16.4%) were diagnosed 

with ischemic colitis, and eight (14.5%) were diagnosed with 

cholangitis (Table 1). There was no missing data concerning 

the RA parameters or the primary and secondary endpoints. 

Factors Associated with In-ICU Mortality 
Except for SOFA, SAPS II, and lactate dosage, no significant 

differences in other variables were found between survivors 

and non-survivors (P=0.03). Table 2 details characteristics of 

in-ICU survivors and non-survivors. 

Factors Associated with AKI 
Patients who experienced AKI (AKI vs. no AKI) had more 

chronic heart failure (30.9% vs. 0%, P=0.01), a higher SOFA 

score (7.0 [IQR, 6–10.8] vs. 5 [IQR, 2–6.0], P=0.02), and a higher 

SAPS II score (54 [IQR, 43.5–61.25] vs. 40 [IQR, 24–49], P=0.01). 

Table 2 details the patients that developed AKI or not. 

Radiomic Analyses 
Supplementary Table 1 reports RA values. 

Table 2. Characteristics of in-ICU survivors vs. non-survivors and characteristics of patients with acute kidney injury or no acute kidney injury
Variable Dead (n=14) Survivor (n=41) P-value AKI (n=42) No AKI (n=13) P-value
Male 8 (14.5) 25 (45.5) 0.51 27 (49.1) 6 (10.9) 0.20
Age (yr) 77.9 (59.1–84) 70.1 (52.9–81.1) 0.21 73.3 (60.47–83.3) 57.15 (46.15–73.22) 0.08
Medical history
  Cardiovascular risk factor 10 (18.2) 28 (50.9) 0.55 31 (56.4) 7 (12.7) 0.15
  Chronic heart failure 4 (7.3) 13 (23.6) 0.55 17 (30.9) 0 0.01
  COPD 4 (7.3) 4 (7.3) 0.10 8 (14.5) 0 0.10
  CKD 1 (1.8) 3 (5.5) 0.73 4 (7.3) 0 0.33
Reason for admission 0.80 0.11
  Peritonitis 8 (14.5) 27 (49.1) 26 (47.3) 9 (16.4)
  Ischemic colitis 3 (5.5) 6 (10.9) 9 (16.4) 0
  Cholangitis 1 (1.8) 7 (12.7) 6 (10.9) 2 (3.6)
  Others 2 (3.6) 1 (1.8) 1 (1.8) 2 (3.6)
Mechanical ventilation 14 (25.5) 35 (63.6) 0.16 39 (70.9) 10 (18.2) 0.13
Duration of ventilation (day) 9 (2.75–20.75) 4 (2–12) 0.17 5 (2–14) 4 (1–16.5) 0.62
Length of hospitalization (day) 9 (6–19.8) 9 (4.5–22.5) 0.90 9 (5.75–19.25) 9 (4.0–59) 0.90
Surgical treatment 12 (21.8) 34 (61.8) 0.59 36 (65.5) 10 (18.2) 0.36
Vasopressor therapy 14 (25.5) 37 (67.3) 0.30 40 (72.7) 11 (20) 0.23
Lactate (µmol/L) 3.8 (2.8–7.5) 2.3 (1.5–3.5) 0.02 3.1 (2.4–4.4) 2.0 (1.3–2.2) 0.01
In-ICU mortality - - - 12 (21.8) 2 (3.6) 0.30
AKI 12 (21.8) 30 (54.5) 0.20 - - -
KDIGO score 2 (1–3) (n=12) 1 (1–2) (n=30) 0.10 - - -
RRT 6 (10.9) 3 (5.5) 0.01 9 (16.4) 0 0.07
SOFA score 7.5 (7.0–11) 6 (4.0–9.0) 0.05 7.0 (6.0–10.8) 5 (2.0–6.0) 0.02
SAPS II 56.0 (49–70.8) 48 (31.5–58.5) 0.03 54.0 (43.5–61.25) 40 (24–49) 0.01
Sepsis 0 3 (5.5) 0.72 1 (1.8) 2 (3.6) 0.27
Septic shock 14 (25.5) 38 (69) - 41 (74.5) 11 (20) -

Values are presented as number (%) or median (interquartile range).
ICU: intensive care unit; AKI: acute kidney injury; COPD: chronic obstructive pneumopathy disease; CKD: chronic kidney disease; KDIGO: Kidney Disease Improving 
Global Outcome; RRT: renal replacement therapy; SOFA: Sequential Organ Failure Assessment; SAPS: Simplified Acute Physiology Score.
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Prediction of In-hospital Mortality 
Associations of RA values and in-ICU mortality are reported 

in Supplementary Table 2. As a result of the elastic net and 

random forest analyses, mortality was associated with RA, 

and the importance of each parameter for predicting different 

models is presented in Supplementary Figure 2. Using elastic 

net, the cross-validated AUC for in-ICU mortality was 0.48 (95% 

CI, 0.43–0.54), optimal threshold yielded 22% sensitivity (95% 

CI, 16%–30%), 67% specificity (95% CI, 62%–71%) and 55% ac-

curacy (95% CI, 51%–60%). Using the random forest method, 

the cross-validated AUC for in-ICU mortality was 0.51 (95% CI, 

0.45–0.57), optimal threshold yielded 14% sensitivity (95% CI, 

8.8%–20%), 90% specificity (95% CI, 87%–93%) and 71% accu-

racy (95% CI, 67%–74%) (Table 3). 

The association of RA with SAPS II for in-ICU mortality pre-

diction was assessed, and variable importance is presented 

in Supplementary Figure 3. For the combination of RA and 

SAPS II, the elastic net cross-validated AUC was 0.57 (95% CI, 

0.52– 0.62), optimal threshold yielded 25% sensitivity (95% CI, 

19%–33%), 76% specificity (95% CI, 71%–80%) and 63% accu-

racy (95% CI, 59%–67%). The random forest cross-validated 

AUC was 0.51 (95% CI, 0.45–0.56), optimal threshold yielded 

6.4% sensitivity (95% CI, 3.4%–12%), 90% specificity (95% CI, 

87%–92%) and 69% accuracy (95% CI, 65%–73%). SAPS II 

alone had a cross-validated AUC of 0.68 (95% CI, 0.63–0.73), 

optimal threshold yielded 10% sensitivity (95% CI, 6.1%–16%), 

94% specificity (95% CI, 92%–96%) and 73% accuracy (95% CI, 

69%–77%) (Table 3). Figure 2 shows ROC curves for mortality. 

Prediction of AKI 
Supplementary Table 3 reports RA values and AKI associa-

tions. The elastic net and the random forest analyses identi-

fied RA associated with AKI, the variable importance of each 

parameter for prediction of different models are presented in 

Supplementary Figure 4. Using elastic net, the cross-validated 

AUC for AKI was 0.71 (95% CI, 0.66–0.77), optimal thresholds 

yielded 99% sensitivity (95% CI, 98.8%–99.9%), 0.7% specificity 

(95% CI, 0.1%–4.7%) and 76% accuracy (95% CI, 73%–80%). 

Using the random forest method, the cross-validated AUC for 

AKI was 0.69 (95% CI, 0.64–0.74), optimal threshold yielded 

97% sensitivity (95% CI, 95%–98%), 6.1% specificity (95% CI, 

3.1%–12%) and 75% accuracy (95% CI, 72%–79%) (Table 3).  

The association of RA with SAPS II for AKI prediction was 

assessed, and variable importance is presented in Supple-

Table 3. Cross-validated AUC of models for prediction of mortality and AKI
Variable Prediction parameter AUC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI) Accuracy, % (95% CI)
Prediction of mortality
  Radiomic analysis
    Elastic net Alpha=0.6 0.48 (0.43–0.54) 22 (16–30) 67 (62–71) 55 (51–60)
    Lambda=0.003
    Random forest mtry=49 0.51 (0.45–0.57) 14 (8.8–20) 90 (87–93) 71 (67–74)
  Radiomic analysis+SAPS II
    Elastic net Alpha=0.6 0.57 (0.52–0.62) 25 (19–33) 76 (71–80) 63 (59–67)
    Lambda=0.006
    Random forest mtry=73 0.51 (0.45–0.56) 6.4 (3.4–12) 90 (87–92) 69 (65–73)
SAPS II 0.68 (0.63–0.73) 10 (6.1–16) 94 (92–96) 73 (69–77)
  Prediction of AKI
    Radiomic analysis
      Elastic net Alpha=0.9 0.71 (0.66–0.77) 99 (98.8–99.9) 0.7 (0.1–4.2) 76 (73–80)

Lambda=0.20
      Random forest mtry=2 0.69 (0.64–0.74) 97 (95–98) 6.1 (3.1–12) 75 (72–79)
    Radiomic analysis+SAPS II
      Elastic net Alpha=0.9 0.94 (0.91–0.96) 95 (93–97) 69 (61–77) 89 (86–92)
    Lambda=0.006
      Random forest mtry=109 0.75 (0.70–0.80) 94 (92–96) 17 (11–24) 76 (72–80)
SAPS II 0.75 (0.70–0.79) 91 (88–94) 32 (25–41) 77 (74–81)

AUC: area under the curve; AKI: acute kidney injury; CI: confidence interval; SAPS: Simplified Acute Physiology Score; mtry: number of variables randomly 
sampled as candidates at each split.



349https://www.accjournal.orgAcute and Critical Care 2023 August 38(3):343-352

Boutin L, et al.  Radiomic analysis in sepsis

Figure 2. Receiver operating characteristic (ROC) curve for in-intensive care unit mortality prediction using radiomic analysis alone (A), using 
radiomic analysis and Simplified Acute Physiology Score (SAPS) II (B), using SAPS II alone (C). AUC: area under the curve; CI: confidence interval.

Figure 3. Receiver operating characteristic (ROC) curve for acute kidney injury prediction using radiomic analysis alone (A), using radiomic analysis 
and Simplified Acute Physiology Score (SAPS) II (B), using SAPS II alone (C). AUC: area under the curve; CI: confidence interval.

mentary Figure 5. For the combination of RA and SAPS II, the 

elastic net cross-validated AUC was 0.94 (95% CI, 0.91–0.96), 

optimal threshold yielded 95% sensitivity (95% CI, 93%–97%), 

69% specificity (95% CI, 61%–77%) and 89% accuracy (95% CI, 

86%– 92%), and the random forest cross-validated AUC was 

0.75 (95% CI, 0.7–0.8), optimal threshold yielded 94% sensi-

tivity (95% CI, 92%–96%), 17% specificity (95% CI, 11%–24%) 

and 76% accuracy (95% CI, 72%–80%). SAPS II alone had 

a cross-validated AUC of 0.75 (95% CI, 0.70–0.79), optimal 

threshold yielded 91% sensitivity (95% CI, 88%–94%), 32% 

specificity (95% CI, 25%– 41%) and 77% accuracy (95% CI, 

74%–81%) (Table 3). ROC curves for mortality prediction are 

shown in Figure 3. 

DISCUSSION 

In this study, we found that RA had poor predictive perfor-

mance for in-ICU mortality and good predictive performance 

for AKI in patients with sepsis from abdominal origin. As-

sociation of RA with SAPS II appeared to show the best AKI 

prediction performances. These results suggest that the use of 

RA from data extracted from CT may help ICU physicians to 

stratify patients with sepsis. In this study, a statistical model for 

RA was evaluated, but further validation is required. 

Clinical utility of RA was investigated in the cancer field and 

predicted relevant outcomes [8-10]. RA was recently used to 

evaluate tissue composition and perfusion. Murgia et al. [19] 

investigated the clinical utility of RA to characterize and diag-
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nose coronary plaques. The authors demonstrated that RA and 

machine learning models can identify and categorize coronary 

atherosclerotic plaques with a high accuracy. Liu et al. investi-

gated the performance of RA to identify portal hypertension in 

cirrhosis. They found that RA could accurately diagnose portal 

hypertension without invasive procedure [20]. Those examples 

illustrate the potential of RA to study organ alterations during 

sepsis. 

The pathophysiology of organ failure during sepsis is 

complex and requires both inflammatory and perfusion in-

volvement. Indeed, tissues undergo perfusion alteration due 

to microvascular obstructions and are affected by immune 

activation and inflammation [5,21,22]. Based on these obser-

vations, we hypothesized that RA could be impacted by sepsis 

and give ICU physicians additional data regarding the out-

come or organ failure. 

In the current study, poor associations were found between 

RA and in-ICU mortality, but several RA features were iden-

tified as predictors of AKI and even more when associated 

with severity scores. We speculated that the changes in organ 

congestion and perfusion are reflected in the RA features. 

Considering that liver failure is known to contribute to AKI [23], 

perfusional change in the liver reflected in the RA features may 

partly explain the model's prediction of AKI. In addition, RA 

features of all images (including liver and kidney) may repre-

sent global or organ specific microcirculation and be related to 

mortality or AKI, as it remains a frequent complication in se-

verely ill patients. This is because RA features do not necessar-

ily reflect perfusional change considering they can also reflect 

parenchymal texture heterogeneity. Moreover, SAPSII is not 

intended to predict AKI. However, the combination of SAPS II 

with predictive models improved the evaluation of the severity 

of the patients as it is associated with high mortality rates. 

In this study, a robust analytical method was used to elucidate 

the relationship between RA and outcomes. First, imaging and 

analysis was performed with the same technique for all the pop-

ulation to limit internal bias. This was inspired by a previously 

published protocol from Image Biomarker Standardization Ini-

tiative [15]. We aimed at avoiding misinterpretations due to the 

large number of covariates and their potential collinearity [24] 

by comparing two analytical strategies. First, we used elastic net 

penalized logistic regression that takes advantage of two types of 

regularization with different objectives. The Ridge penalization 

solves the problem of highly correlated variables, while LASSO 

allows the selection of relevant variables. Cross-validation was 

used both to select the tuning hyperparameters and to assess the 

performances of the model. Then, we compared this strategy to a 

machine-learning algorithm well known for its performance, the 

random forest algorithm [25,26]. Parmar et al. [27] evaluated the 

use of machine learning algorithms for radiomic prediction and 

found that the random forest (rather than the Wilcoxon) method 

for parameter selection showed the best performance. In con-

trast, penalized logistic regression has been poorly evaluated in 

this setting [28]. Both algorithms showed consistent results re-

garding prediction of in-ICU AKI but needed more optimization 

for prediction of in-ICU mortality. As a pilot study, the use of two 

predictive models improved predictive performance assessed 

for in-ICU mortality or AKI. Despite cross-validation, the model's 

internal validation would need to be strengthened using a vali-

dation cohort. 

According to the present study, the in-ICU mortality of sep-

sis was 25%, and SOFA score and SAPS II calculated during 

the first 24 hours of sepsis were similar to those found in 

recent literature [21]. AKI had a prevalence close to 70% in 

this cohort, with a median KDIGO grade of 3. Epidemiologic 

studies reported a lower prevalence ranging between 40 and 

50% for AKI in ICU for septic patients [29,30]. This emphasizes 

the importance of risk assessment in this population. For in-

stance, the algorithm will easily predict AKI because it is a very 

frequent condition in our population. To limit this proportion 

bias, performance prediction was estimated using AUC to as-

sess the same importance for AKI and non-AKI. In this regard, 

RA could represent a valuable tool based on existing CT data. 

This study has several limitations. Some limits are due to the 

retrospective nature of the study, the limited number of select-

ed patients, and the lack of information regarding preexisting 

cardiovascular, respiratory, or hemodynamic status before sep-

sis. Moreover, although CT data used for RA were obtained with 

the same equipment, CT imaging parameters were protoco-

lized. Image segmentation was assessed by manual correction, 

and this might have induced intra-observer bias. However, seg-

mentation was made on a single slice of liver and kidneys with 

a vascular landmark, which is reproducible and representative 

of the whole tumor analysis [31]. In addition, Ng et al. [31] have 

shown that single slice analysis can be used as a surrogate of 

whole organ segmentation for RA for tumor analysis. However, 

extrapolation to sepsis has not been validated to date, and this 

method could remain a limitation of our study. Imaging was as-

sessed during the 48 hours before or after sepsis diagnosis and 

patient selection depended on imaging, thus limiting the gen-

eralization of results. The diagnosis of AKI was assessed within 

seven days after sepsis in our study, and AKI might have oc-
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curred before or after CT examination. Consequently, the role 

of contrast material in the development of worsening of AKI 

cannot be excluded. However, the real rate and existence of AKI 

due to iodinated contrast material is debated and is undoubt-

edly less frequent than AKI due to sepsis. However, this study 

did not allow calculation of the exact number of patients with 

contrast induced AKI, and it may have been miscategorized as 

sepsis induced AKI due to the time overlap [32]. 

Finally, severe sepsis causes multiple organ failures leading 

to death. AKI is associated with mortality in studies [29,30]. 

In this study, we focused RA analysis on liver and kidney im-

aging. Thus, mortality during sepsis could be associated with 

other organ failures such as the heart, or the brain that were 

not considered in this study. This might explain RA’s poor per-

formance for our primary endpoint. 

Moreover, several technical aspects need to be further inves-

tigated to ensure the reliability and generalizability of the ra-

diomic features of a given lesion. This is because this prelimi-

nary study lacks internal validation as it is a single-center study 

with a small sample size. To make radiomics a reality in the 

clinical daily routine, further advances are needed to render 

such technology sufficiently user-friendly and time effective. 

In conclusion, we found that RA has poor predictive perfor-

mance for in-ICU mortality but good predictive performance 

for AKI in patients with sepsis from abdominal origin. Associ-

ation of RA with SAPS II appears to show the best AKI predic-

tion performances. These results suggest that RA from CT data 

may help stratify sepsis patients. However, validation with a 

larger prospective cohort is needed to confirm our model. 
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