Background Baseline diaphragmatic dysfunction (DD) at the initiation of non-invasive ventilation (NIV) correlates positively with subsequent intubation. We investigated the utility of DD detected 2 hours after NIV initiation in estimating NIV failure in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Methods: In a prospective-cohort design, we enrolled 60 consecutive patients with AECOPD initiated on NIV at intensive care unit admission, and NIV failure events were noted. The DD was assessed at baseline (T1 timepoint) and 2 hours after initiating NIV (T2 timepoint). We defined DD as ultrasound-assessed change in diaphragmatic thickness (ΔTDI) <20% (predefined criteria [PC]) or its cut-off that predicts NIV failure (calculated criteria [CC]) at both timepoints. A predictive-regression analysis was reported. Results: In total, 32 patients developed NIV failure, nine within 2 hours of NIV and remaining in next 6 days. The ∆TDI cut-off that predicted NIV failure (DD-CC) at T1 was ≤19.04% (area under the curve [AUC], 0.73; sensitivity, 50%; specificity, 85.71%; accuracy; 66.67%), while that at T2 was ≤35.3% (AUC, 0.75; sensitivity, 95.65%; specificity, 57.14%; accuracy, 74.51%; hazard ratio, 19.55). The NIV failure rate was 35.1% in those with normal diaphragmatic function by PC (T2) versus 5.9% by CC (T2). The odds ratio for NIV failure with DD criteria ≤35.3 and <20 at T2 was 29.33 and 4.61, while that for ≤19.04 and <20 at T1 was 6, respectively. Conclusions: The DD criterion of ≤35.3 (T2) had a better diagnostic profile compared to baseline and PC in prediction of NIV failure.
Background Due to the risk of viral transmission during in-person training, a shift toward online platforms is imperative in the current pandemic. Therefore, we compared the effectiveness of an in-person interactive course with a structurally similar online course designed to improve cognitive skills among clinical health professionals in arterial blood gas analysis, management of electrolyte imbalances, and approaches to mechanical ventilation in critically ill patients.
Methods In an observational, outcome assessor-blinded, cohort trial, group A included participants enrolled prospectively in an online course, while group B included those who took part in an in-person course (retrospective arm). The primary objective was comparison of cognitive skills through a pre and post-test questionnaire. Statistical analysis was performed using Student t-test.
Results In total, 435 participants were analyzed in group A, while 99 participants were evaluated in group B. The mean pre-test score was 9.48±2.75 and 10.76±2.42, while the mean post-test score was 11.94±1.90 (passing rate, 64.6%) and 12.53±1.63 (passing rate, 73.3%) in groups A and B, respectively. Group B scored significantly higher in both pre-test (P=0.001) and post-test evaluations (P=0.004). The improvement in post-test score was significantly greater (P=0.001) in group A (2.46±2.22) compared to group B (1.77±1.76). The medical specialties fared better in group B, while surgical specialties scored higher in group A. The pre-test vs. post-test scores exhibited a moderate correlation in both groups (P<0.001). The feedback survey showed a Likert score >3.5 for most points in both groups.
Conclusions The online teaching module exhibited a significant benefit in terms of participant sensitization and knowledge sharing.
Citations
Citations to this article as recorded by
Health Care Simulation as a Training Tool for Epidemic Management Marcia A. Corvetto, Fernando R. Altermatt, Francisca Belmar, Eliana Escudero Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare.2023;[Epub] CrossRef
Determining Obstruction in Endotracheal Tubes Using Physical Respiratory Signals Hyunkyoo Kang, Jin-Kyung Park, Jinsu An, Jeong-Han Yi, Hyung-Sik Kim Applied Sciences.2023; 13(7): 4183. CrossRef