Acute lung injury following occupational exposure to nitric acid

Ji Hoon Jang¹, Sung Yeon Hwang², Chi Ryang Chung¹,³, Gee Young Suh¹,⁴, Ryoung-Eun Ko¹

Departments of ¹Critical Care Medicine, ²Emergency Medicine, and ³Medicine, and ⁴Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Corresponding author: Ryoung-Eun Ko
Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
Tel: **, Fax: **, E-mail: koryoungeun@gmail.com

Running title: Acute lung injury after exposure to nitric acid
Nitrogen dioxide (NO₂) is one of the compounds formed from breakdown of nitric acid (HNO₃) and can lead to extensive damage to the pulmonary epithelium, causing both airway damage and inflammation [1-3]. A 60-year-old male presented to the emergency room complaining of deteriorating productive cough with dyspnea. The patient worked in a metal plating factory and reported 2-minute inhalation of HNO₃ approximately 25 hours prior to arrival. At presentation, arterial blood gas analysis showed pH 7.37, partial pressure of carbon dioxide (PCO₂) 41 mm Hg, and partial pressure of oxygen (PO₂) 59 mm Hg on 15 L/min of oxygen with a non-rebreathing mask. Crackles were audible over the posterior of both lungs. The chest X-ray showed diffuse bilateral opacities (Figure 1A), and computed tomography presented bilateral peribronchial consolidation and ground glass opacity with sparing in the subpleural region (Figure 2). The patient was treated with high-flow nasal oxygen therapy and transferred to an intensive care unit. Administration of bronchodilator and methylprednisolone (1 mg/kg and 70 mg/, respectively) was initiated. He achieved clinical improvement and was transferred to the general ward with 5 L/min via nasal cannula. The patient was discharged 7 days after admission without oxygen therapy (Figure 1B). At discharge, methylprednisolone was reduced to 30 mg/day for 1 week and eventually discontinued after further reduction to 15 mg/day.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

ORCID

Ji Hoon Jang https://orcid.org/0000-0002-5048-8820
Sung Yeon Hwang https://orcid.org/0000-0002-1352-3009
Chi Ryang Chung https://orcid.org/0000-0003-1830-307X
Gee Young Suh https://orcid.org/0000-0001-5473-1712
Ryoung-Eun Ko https://orcid.org/0000-0003-4945-5623
AUTHOR CONTRIBUTIONS

Conceptualization: JHJ, REK. Data curation: JHJ, REK. Visualization: JHJ. Writing–original draft: JHJ, REK. Writing–review & editing: all authors.
REFERENCES

Figure 1. Chest radiograph. (A) Initial chest X-ray demonstrates diffuse bilateral opacities. (B) At hospital discharge, chest X-ray showed marked improvement.

Figure 2. Chest computed tomography scan obtained on the day of emergency room visit presents bilateral peribronchial consolidation and ground glass opacity with sparing in the subpleural region.